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ABSTRACT: In large-scale construction sites there are constant needs for rapid 
recognition and accurate measurement of objects so that on-site decisions can be 
made quickly and safely. Current methods involve full area laser range scanning 
systems that can produce very detailed models of a scanned scene, however the 
computational and data acquisition time that is required precludes the methods from 
being used for real time decision making. This paper presents algorithms to fit objects 
to sparse point clouds of measured data in a construction scene, that significantly 
decrease data acquisition time, and computational and modeling time. Two basic 
fitting and matching algorithms that address construction site material of cuboid and 
cylindrical shapes are discussed.  Experimental results that indicate that the proposed 
algorithms assist an operator to create models of construction objects rapidly and 
with sufficient accuracy are also presented.  
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1. INTRODUCTION   
  

Using automated or semi-automated 
equipment on a large construction site requires 
rapid recognition and accurate measurement of 
objects in the workspace so that timely on-site 
decisions can be made. Most methods for 
modeling work environments rely on analyzing 
dense point cloud data, which requires 
computationally intensive processing, and 
usually takes much longer than the ongoing 
construction operation. Low accuracy in 
extracting objects from dense clouds is an 
additional limitation of full range scanning 
methods. Since most objects in a construction 
site are known and man made, they can be 
graphically generated and stored in object 
database as parametrically defined object classes 
[1]. By exploiting a human operator’s ability to 

recognize objects in a construction scene, pre-
stored1 graphic representations2 of3 construction 
objects 4  can 5  be matched and fitted to sensed 
data from 3D position sensors deployed in the 
construction environment [2][3]. 
 The ability to extract models of real 
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world objects in a construction workspace for 
equipment operations from only a limited 
number of scanned points is a significant 
advantage of this approach over full range 
scanning methods that require intensive 
computational load because of range data 
processing for dense point clouds which consists 
of tens of thousand data points.  
 This paper presents algorithms that 
accurately fit and match objects, with regard to 
location and orientation, to sparse point clouds 
which have less than 50 scanned points for each 
object in a construction scene. The 
implementation of the algorithms will allow a 
human operator to rapidly construct a world 
model from unfiltered real-world range data. 
  With respect to the geometric 
primitives most frequently encountered in a 
construction site, it appears that a few types of 
objects can be used to model a wide range of 
construction scenes [4].  Cuboids can be used for 
fitting and matching structural objects such as 
columns, box-beams and walls and finishing 
objects. Cylinders can be used to fit and match 
chemical pipes, ventilation pipes, and concrete 
piles. The following fitting and matching 
algorithms were developed for each primitive:  
 
1. Cuboid algorithm 
2. Cylindrical object algorithm 
 
2. EXPERIMENTAL SETUP AND HUMAN 
ASSISTED OBJECT FITTING AND 
MATCHING PROCESS 
 
 A single-axis laser range finder, a pan 
and tilt unit, and a personal computer were used 
for the experimental set up (Figure 1). The 
single-axis laser range finder (DistoMemo) that 
is mounted on the pan and tilt unit is designed 
not only for hand-held operation, but also for 
computer use through interface. The 
measurements can be remotely taken and 
transferred directly into the computer. The range 
of measurement of the laser range finder is 100 
m with accuracy of ±3 mm. The step size of the 
tele-operated pan and tilt unit, which controls 
the laser range finder, is of high resolution 
(0.0128571º/step) and its maximum speed is a 
little over 60º/second. Its error is 0.2 cm for 
every 10 m in motion.  
 The sparse points cloud is acquired by 

operator picking points to each object using 
single-axis laser range finder. The modeling 
process involves the following functions:  
1. Select object for scanning (by operator) 
2. Acquire sparse point cloud data  in the form 

of range images  
3. Convert range data into xyz coordinates 
4. Analyze the features of each surface of the 

object 
5. Match all of the object surfaces with the 

model’s surfaces using matching algorithms 
6. Fit the object into the point cloud using 

fitting algorithm 
 
Figure 2 displays a process diagram of these 
functions. 
 
3. OBJECT FITTING AND MATCHING 
ALGORITHMS 
 
 Graphical workspace modeling can 
improve construction equipment control and 
operations. Equipment operators can use 
graphical workspace models as an interactive 
visual feedback tool during equipment controls 
[2][5]. 
 For the rapid modeling of construction 
site objects from sparse point clouds two basic 
algorithms were developed that address 
construction site objects of cuboid and 
cylindrical shape. Since these two types of 
primitives consist of 6 planar surfaces (cuboid), 
and two planar surfaces and one curved surface 
(cylinder), the algorithms were developed as a 
surface based fitting and matching method. 
Algorithm development and revisions were 
based on lab experiments.  
  By using these algorithms we achieve: 
(1) accurate and reliable methods to save 
computational cost and time, (2) improved 
fitting and matching methods to attain real-time 
execution, and (3) increased modeling accuracy 
with operator’s assistance. 
            The following sections explain the fitting 
and matching methods which were developed 
and used for rapid workspace modeling:   
 
3.1 Cuboid Algorithm 
 
 This section describes how to fit a 
sparse points cloud to a cuboid’s surfaces using 
the k-nearest neighbors and the least squares 
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methods. There is an assumption of this process 
that three surfaces of cuboid should be visible in 
order to acquire data points.  
 
3.1.1 Point Segmentation Using K-Nearest 
Neighbors Method 
 
 To find the nearest points for all 
measured points on a cuboid, a k-nearest 
neighbors algorithm was used. The algorithm 
finds the nearest two points by computing all the 
distances from a scanned point to all other points 
[6]. After determining two nearest neighbors for 
each scanned point, a group of three-point sets 
was found. Then, a normal vector for each three-
point set was computed. By analyzing normal 
vectors, the scanned points were segmented by 
each cuboid surface.  
 
3.1.2 Plane Optimization Using the Least 
Squares Fitting Method 
 
 The least squares method [7] was used 
for the best-planar fit of point sets on each 
surface of the cuboid after segmentation was 
applied. 
 Since in a planar regression, Y is to be 
regressed on two independent variables X and Z, 
a relationship, where both X and Z, are 
calculated as deviations from their means, was 
used: 

iiii ZXYE ⋅+⋅+= γβα)(                     (1) 
For any given combination of Xi and Zi the 
expected yield E(Yi) is a point directly above the 
plane, shown as a hollow dot in Figure 3. The 
actual value of the component Yi of an observed 
point is somewhat greater than its expected 
value and is shown as a solid dot lying on the 
plane. The difference between the observed and 
expected values of Yi is shown by the error term 
ei and thus the observed value Yi is expressed as 
its expected value plus the error term ei: 

iiii eZXY −⋅+⋅+= γβα                      (2) 
While moving along the x-direction, βi is 
interpreted as the slope of the plane. In the same 
way γ is the subsidiary effect of z. To minimize 
the error sum of the squares a coefficient is used:  
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Taking the partial derivatives of the above 

expression with respect to α̂ , β̂  and γ̂ , and 
setting them to zero, finally alpha, beta, gamma 
are found. Using this expression, the three 
optimized surfaces of the cuboid are computed 
(Figure 3). 

After segmenting all scanned points by 
the three surfaces of the cuboid, the points were 
projected onto the optimized surface to compute 
dimensions.  
 
3.1.3 Determining Intersecting Edges and 
Computing Dimensions 

 
The three surface planes of the cuboid, 

from which range data were received, intersect 
at a point, and each two planes intersect at a line. 
The intersection of the two planes of the cuboid 
was found by solving the two linear equations 
representing the planes. After applying this for 
all three surfaces of the cuboid, the three edges 
of the cuboid were determined and matched. A 
vertex of the cuboid was also determined. 
Figures 4 and 5 show the results of point 
segmentation, and matching vertex process. 

Once the three edges of the cuboid were 
defined, the dimensions of the cuboid were 
determined as follows:  By computing the 
distances of all measured points on each surface 
to each one of the already defined edges of the 
same surface, the furthest point from each edge 
was found. The distances of the furthest points 
on the surfaces from the three intersecting edges 
represent the dimensions of the cuboid.  
 Figure 6 shows a fitted and matched 
model of an object after the application of the 
cuboid algorithm. 
  
3.2 Cylindrical Object Algorithm  
 
  Four parameters are required for fitting 
and matching a solid cylinder: a scalar radius r; 
an axis vector, a; a center point to determine the 
axis vector, c = (Xc, Yc, Zc) and a set of scanned 
points g= {(Xi, Yi, Zi)} to find out the boundary 
of the cylinder. To determine the normal vector, 
the “k-nearest neighbors method” was used.  
Then, by analyzing normals, the scanned points 
were segmented by surface (planar or curved). 
Subsequently, by projecting all points on the 
curved surface onto the planar surface, 
parameters r and c were estimated. The least 
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squares method was also used to optimize the 
curved surface. The radius of the cylinder was 
found as the distance from the center of the 
circle to any point on the optimized curve. 
Projected points on the planar surface are 
considered end points of different chords in the 
circle and used to estimate its center ĉ . An 
initial estimate of the radius, r̂ , is found by 

)ˆ(ˆ kcmeanr ′−= ( k′ = {the points on the 
optimized curve of planar surface}). Then the 
final values of a, c, and r are found by applying 
the least squares method to all scanned data 
(Figure 7). 
 
4. EXPERIMENTAL RESULTS AND 
CONCLUSIONS 
 
 The fitting and matching algorithms 
discussed in this paper, are an integral part of a 
method that involves several other functions 
such as: human object recognition, collecting of 
range information, grouping of scanned points, 
and computing dimensions to final fitting and 
matching. A basic feature of the method is that it 
takes advantage of human cognitive ability to 
recognize and classify objects in the workspace; 
that is a human operator initiates scanning, 
recognizes objects, and controls the system for 
data acquisition. In addition fitted and matched 
objects are verified by the operator and then 
inserted into the workspace model.  
 Experiments were conducted to 
determine the efficiency of the human assisted 
modeling method. The algorithms, which are 
based on the least squares method, were found to 
be useful for modeling construction objects of 
cylindrical and cuboid shapes. They were 
applied to determine the width, depth, and height 
of cuboids, and the diameter, and height of solid 
cylinders including the location and orientation. 
 Table 1 shows an example of experimental 
results of a cuboid fitting and matching process. 
The test results of the algorithms present 
approximately less than 1-degree angular 
deviation between model and real objects’ axis. 
Respectively in all tests the size difference 
between the modeled and the actual object’s 
surfaces is less than 5 %. For increased accuracy 
further modifications of the algorithms are 
required. In general low deviation values and the 
low modeling times in Table 1 indicate that a 
system based on the above geometric algorithms 

and a human-guided simple laser range finder 
can model construction objects rapidly and with 
sufficient accuracy.  
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Figure 1. Experimental Setup  
 
 
 

 
Figure 2. Fitting and Matching Process 
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Figure 3. Surface Optimization 

 
Figure 4. Matching Points and Segmentation 

 
Figure 5. Three Edges of a Cuboid and its Centroid  

 

 
Figure 6. Fitted and Matched Cuboid 

 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7. Fitted and Matched Cylinder 
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Table 1. Test Results of the Cuboid Algorithm 
Matching Point 

(vertex)  
Modeled 
Object 

Actual 
Object Deviation 

x 57.749 57.816 0.067 
y 11.697 11.733 0.037 Object 1 
z -35.447 -35.464 -0.017 
x 59.981 60.037 0.056 
y -5.203 -5.136 0.067 Object 2 
z -41.370 -41.543 -0.173 
x 59.967 60.028 0.061 
y -5.182 -5.108 0.073 Object 3 
z -41.354 -41.492 -0.138 
x 59.918 60.032 0.114 
y -5.170 -5.109 0.061 Object 4 
z -41.210 -41.621 -0.411 

Edge A 1.089 
Edge B 1.824 

Angular 
deviation 

between edges Edge C 0.927 
Measuring + 

Computing time    pts Measuring 
(sec.) 

Computing 
(sec.)  

Object 1 16 30.00 5.87 35.87 
Object 2 18 50.00 5.66 55.66 
Object 3 22 60.00 6.48 66.48 
Object 4 26 80.00 5.60 85.60 

 


